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Abstract
A systematic investigation of the complete integrability of a fourth-order
autonomous difference equation of the type w(n + 4) = w(n)F (w(n + 1),

w(n + 2), w(n + 3)) is presented. We identify seven distinct families of four-
dimensional mappings which are super integrable and have three (independent)
integrals via a duality relation as introduced in a recent paper by Quispel, Capel
and Roberts (2005 J. Phys. A: Math. Gen. 38 3965–80). It is observed that
these seven families can be related to the four-dimensional symplectic mappings
with two integrals including all the four-dimensional periodic reductions of
the integrable double-discrete modified Korteweg–deVries and sine-Gordon
equations treated in an earlier paper by two of us (Capel and Sahadevan 2001
Physica A 289 86–106).

PACS numbers: 02.30.Ik, 02.30.Jr, 45.20.Jj, ,
Mathematics Subject Classification: 37J35, 37J10, 37K10

1. Introduction

Substantial progress in the theory of integrable mappings was made by the introduction of the
18-parameter Quispel, Roberts and Thompson (QRT) family of two-dimensional mappings
[1, 2] obtained by differencing an integral I (w, x) with w = w(n),w(n + 1) = x(n) = x,
that is a rational biquadratic function of w and x. The iterated values w(n + 1) = w′ and
x(n + 1) = x ′ are defined by the following relation:

I (w, x) − I (w′, x ′) = 0.

Higher dimensional integrable mappings could be obtained by reduction from known
integrable difference equations; see, e.g., [3–5] and also [6] for a general review. In [7], we
studied a family of four-dimensional mappings arising from an integral I (w, x, y, z), w =
w(n), x = x(n), y = y(n), z = z(n) which is a rational function with the numerator and
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denominator being quadratic polynomials in terms of the variables (w, x, y, z). By taking
the difference I (w, x, y, z) − I (w′, x ′, y ′, z′) = 0 one can obtain a 162-parameter family of
mappings which is not integrable in general. However in [7] we have considered the special
case that the integral I (w, x, y, z) is invariant under cyclic permutation of coordinates, that is

I (w, x, y, z) = I (x, y, z,w) = I (y, z,w, x) = I (z,w, x, y) (1.1)

and we have restricted ourselves to mappings having the symplectic structure with
(antisymmetric) 2-form

�(ξ, η) = Cξηξη, (ξ, η = w, x, y, z) (1.2)

with Cξη being constants that are invariant under iterations of the mapping. As a consequence,
apart from several cases that can be reduced to two-dimensional mappings of the QRT family,
we have identified six families of four-dimensional symplectic mappings of type G

w′ = x, x ′ = y, y ′ = z, z′ = 1

w
G(x, y, z), (1.3)

with explicit expressions for G(x, y, z). The reported six families can also be identified with
the four-dimensional reductions arising from periodic solutions

u(n + z2,m − z1) = u(n,m) (1.4)

of the integrable discrete–discrete modified Korteweg–de Vries (��mKdV) and integrable
discrete–discrete sine-Gordon (��s-G) on the two-dimensional lattice (m, n) ∈ Z2 of [4].
From this it follows, cf [4], that six families of symplectic mappings admit a second independent
integral K(w, x, y, z) which can be constructed from the trace of monodromy matrices formed
by products of Lax matrices [4] and which is not cyclic invariant in general. Hence the identified
six families of four-dimensional symplectic mappings are completely integrable in the sense
of Liouville [6, 8].

In this paper, we consider four-dimensional mappings of type F having the form

w′ = x, x ′ = y, y ′ = z, z′ = wF(x, y, z) (1.5)

and derive seven distinct families of super integrable mappings, that is they are measure
preserving and admit three independent integrals of motion. Taking a general linear
combination of the constructed three integrals we can consider a duality relation in the sense
of [9], that is

I (w, x, y, z) − I (x, y, z, z′) = f (w, x, y, z, z′)f ∗(w, x, y, z, z′), (1.6)

in which f = 0 is one of the seven integrable equations of type F. Considering the dual
equations f ∗ = 0 it turns out that they can be identified as one of the six symplectic and
integrable mappings of type G in (1.3) given in [7], apart from some more mappings that
can be reduced to two-dimensional mappings of the QRT family [2]. (From a more general
expression for I (w, x, y, z) including another (dependent) integral as well we obtain in a
number of cases a dual mapping with two integrals but with no obvious symplectic structure,
in complete analogy with the example in equation (32) of [9]).

To investigate the super integrable mappings of type F we consider an integral I (w, x, y, z)

having the form

I (w, x, y, z) = 1

wxyz
[A11(x, y)w2z2 + A12(x, y)wz2 + A13(x, y)z2 + A21(x, y)zw2

+ A22(x, y)wz + A23(x, y)z + A31(x, y)w2 + A32(x, y)w + A33(x, y)] (1.7)

which is not assumed to satisfy cyclic property (1.1) and in which Aij (x, y)’s are unknown
functions to be determined. It is straightforward to check that the equation I (w, x, y, z) =
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I (w′, x ′, y ′, z′) = I (x, y, z, z′) leads to a quadratic equation in z′ which can be rewritten in a
factorized form[

z′ − w
A11(x, y)z2 + A21(x, y)z + A31(x, y)

A11(y, z)x2 + A12(y, z)x + A13(y, z)

]

×
[
−1 +

1

wz′
A13(x, y)z2 + A23(x, y)z + A33(x, y)

A11(y, z)x2 + A12(y, z)x + A13(y, z)

]
= 0 (1.8)

provided the following conditions

A12(x, y)z2 − A21(y, z)x2 + A32(x, y) − A23(y, z) = A22(y, z)x − A22(x, y)z, (1.9)

[A11(x, y)z2 + A21(x, y)z + A31(x, y)][A13(x, y)z2 + A23(x, y)z + A33(x, y)]

= [A11(y, z)x2 + A12(y, z)x + A13(y, z)][A31(y, z)x2 + A32(y, z)x + A33(y, z)]

(1.10)

hold. Thus it is clear from equation (1.8) that under the conditions given in (1.9) and (1.10),
I (w, x, y, z) is an integral of an F-type mapping

w′ = x, x ′ = y, y ′ = z, z′ = wF(x, y, z),

with

F(x, y, z) = A11(x, y)z2 + A21(x, y)z + A31(x, y)

A11(y, z)x2 + A12(y, z)x + A13(y, z)
(1.11a)

= A31(y, z)x2 + A32(y, z)x + A33(y, z)

A13(x, y)z2 + A23(x, y)z + A33(x, y)
. (1.11b)

Furthermore I (w, x, y, z) is also an integral of a G-type mapping

w′ = x, x ′ = y, y ′ = z, z′ = 1

w
G(x, y, z)

with

G(x, y, z) = A13(x, y)z2 + A23(x, y)z + A33(x, y)

A11(y, z)x2 + A12(y, z)x + A13(y, z)
(1.12a)

= A31(y, z)x2 + A32(y, z)x + A33(y, z)

A11(x, y)z2 + A21(x, y)z + A31(x, y)
. (1.12b)

We wish to mention that, in line with equation (1.6), the G-type of mapping will be
referred to as dual mapping of the F-type of mapping (1.11) because of the factorization (1.8).

The plan of this paper is as follows. In section 2, we consider F-type of mapping (1.11)
and investigate which conditions on the functions Aij (x, y) should be imposed to have three
independent integrals. In section 3, we present seven families of mappings admitting three
independent integrals. In section 4, we identify six families of four-dimensional mappings
possessing two independent integrals. In section 5, we construct dual mappings of type G
associated with the super integrable mappings derived in section 3. In section 6, we give a brief
summary of our investigations, a discussion of the possible reductions to three-dimensional
mappings and a comparison to mappings in the recent literature and a final comment concerning
possible extensions and applications.
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2. Conditions for F-type mappings to have three integrals

Consider an F-type mapping having the form

w′ = x, x ′ = y, y ′ = z, z′ = w
( z

x

)ν [f1(y)xz + f2(y)x + f3(y)z + f4(y)]

[f5(y)xz + f6(y)x + f7(y)z + f8(y)]
,

(2.1)

where fi(y)’s are unknown functions to be determined. Then from equation (1.11a) we find

A11(x, y) = [xf1(y) + f3(y)]h1(x, y), (2.2a)

A31(x, y) = [xf2(y) + f4(y)]h2(x, y), (2.2b)

A11(y, z) = [zf5(y) + f6(y)]h3(y, z), (2.2c)

A13(y, z) = [zf7(y) + f8(y)]h4(y, z), (2.2d)

A21(x, y) = [xf2(y) + f4(y)]h1(x, y) + [xf1(y) + f3(y)]h2(x, y), (2.2e)

A12(y, z) = [zf7(y) + f8(y)]h3(y, z) + [zf5(y) + f6(y)]h4(y, z), (2.2f )

where ( z

x

)ν

= h1(x, y)z + h2(x, y)

h3(y, z)x + h4(y, z)
. (2.3)

Similarly from equation (1.11b) we find

A31(y, z) = [zf1(y) + f2(y)]h5(y, z), (2.4a)

A33(y, z) = [zf3(y) + f4(y)]h6(y, z), (2.4b)

A13(x, y) = [xf5(y) + f7(y))]h7(x, y), (2.4c)

A33(x, y) = [xf6(y) + f8(y)]h8(x, y), (2.4d)

A32(y, z) = [zf3(y) + f4(y)]h5(y, z) + [zf1(y) + f2(y)]h6(y, z), (2.4e)

A23(x, y) = [xf6(y) + f8(y)]h7(x, y) + [xf5(y) + f7(y)]h8(x, y), (2.4f )

where ( z

x

)ν

= h5(y, z)x + h6(y, z)

h7(x, y)z + h8(x, y)
. (2.5)

Noting that

∂2

∂x∂z
[zνh4(y, z) − xνh2(x, y)] = 0

the solution of equation (2.3) is

h1(x, y) = x−ν[xh1(y) + l1(y)], h2(x, y) = x−ν[xl3(y) + h2(y)],

h3(x, y) = y−ν[yh1(x) + l3(x)], h4(x, y) = y−ν[yl1(x) + h2(x)].
(2.6)

Similarly the solution of equation (2.5) can be written as

h5(x, y) = yν[yh5(x) + l5(x)], h6(x, y) = yν[yl7(x) + h6(x)],

h7(x, y) = xν[xh5(y) + l7(y)], h8(x, y) = xν[xl5(y) + h6(y)].
(2.7)
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From equations (2.2) and (2.4) we have

A11(y, z) = [yf1(z) + f3(z)]h1(y, z) = [zf5(y) + f6(y)]h3(y, z), (2.8a)

A33(y, z) = [zf3(y) + f4(y)]h6(y, z) = [yf6(z) + f8(z)]h8(y, z), (2.8b)

A31(y, z) = [yf2(z) + f4(z)]h2(y, z) = [zf1(y) + f2(y)]h5(y, z), (2.8c)

A13(y, z) = [yf5(z) + f7(z)]h7(y, z) = [zf7(y) + f8(y)]h4(y, z). (2.8d)

Taking for simplicity l1(y) = l3(y) = l5(y) = l7(y) = 0 it is clear that if we have solutions
of equations (2.6)–(2.8) satisfying the conditions (1.9) as well then the mapping (2.1) has three
different integrals corresponding to the terms with h1(y), h6(y) and {h2(y), h5(y)} respectively
in the expression for I (w, x, y, z) given in equation (1.7).

To work out the condition (1.9) we first note that the mixed second derivative with respect
to x and z of the left-hand side of (1.9) divided by xyz must be zero. It follows that the
expressions A12(x,y)

xy
and A32(x,y)

xy
must be linear combinations of the terms xδ, δ = −1, 0, 1,

that is

A12(x, y)

xy
= a1(y)x2 + a2(y)x + a3(y)

x
,

(2.9a)
A32(x, y)

xy
= b1(y)x2 + b2(y)x + b3(y)

x

A21(y, z)

yz
= c1(y)z2 + c2(y)z + c3(y)

z
,

(2.9b)
A23(y, z)

yz
= d1(y)z2 + d2(y)z + d3(y)

z
,

where ai(y), bi(y), ci(z) and di(z), i = 1, 2, 3 are unknowns functions to be determined.
Substituting equations (2.9a) and (2.9b) in equation (1.9) we find that the consistency requires
the following conditions

c1(y) = a1(y), c3(y) = b1(y), d1(y) = a3(y), d3(y) = b3(y) (2.10)

and

a2(y) = a20 + a21y + a22y
2

y
, b2(y) = b20 + b21y + b22y

2

y
,

c2(y) = a20 + a21y + b22y
2

y
, d2(y) = b20 + b21y + a22y

2

y
,

(2.11)

where a20, a21, a22, b20, b21 and b22 are unknown constants. As it will turn out the
conditions (2.9)–(2.11) impose rather severe restrictions to obtain super integrable mappings.

3. Seven families of F-type of mappings

We mention here that equation (2.8) can have solutions with fi(y) = κi, i = 1, 2, . . . , 8 where
all the hα(y) for α = 1, 2, 5, 6 in equations (2.6), (2.7) contain a factor (y + aα) (case 3.1).
Also, we have six solutions in which not all fi(y) are constants and where

h1(x, y) = h3(x, y), h8(x, y) = h6(x, y)xν6y−ν6 (3.1a)

h5(x, y) = h7(y, x) = h2(x, y)x−ν5yν2 = h4(y, x)x−ν5yν2 (3.1b)

which will be treated in cases 3.2–3.7
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Case 3.1. In this case by taking l1(y) = l3(y) = l5(y) = l7(y) = 0 we have

h1(x, y) = h3(y, x) = x1−νy1−ν(y + a1)h1,
(3.2a)

h6(x, y) = h8(y, x) = xνyν(x + a6)h6

h2(x, y) = h4(y, x) = x−νy1+ν(y + a2)h2,
(3.2b)

h5(x, y) = h7(y, x) = x−νy1+ν(x + a5)h5.

From equation (2.8) we find that

f1(y) = f5(y) = κ1, f2(y) = f7(y) = κ2,

f3(y) = f6(y) = κ3, f4(y) = f8(y) = κ4,
(3.3)

a1 = κ3

κ1
, a2 = κ2

κ1
, a5 = κ4

κ2
,

a6 = κ4

κ3
, h5 = a2h2.

(3.4)

In order to satisfy equations (2.9)–(2.11) we must have ν = 0 and then the explicit forms
for Aij (x, y) are as given in equation (A.1) of appendix A. Then the mapping is

w′ = x, x ′ = y, y ′ = z, z′ = w
[κ1xz + κ2x + κ3z + κ4]

[κ1xz + κ2z + κ3x + κ4]
, (3.5)

and has three independent integrals I1, I2 and I3, in which I1κ
−1
1 , I2κ

−1
1 and I3κ

−1
3 are the

coefficients of the terms with h1, h2 and h6 respectively in the expression for I (w, x, y, z).
The explicit forms of integrals are

I1 = wz(κ1x + κ3)(κ1y + κ3) + z(κ1x + κ3)(κ2y + κ4) + w(κ1y + κ3)(κ2x + κ4)

+ κ3(κ2xy + κ4(x + y)), (3.6a)

I2 = z(κ1x + κ2)(κ1 + κ3y
−1) + z−1(κ4x

−1 + κ2)(κ4 + κ3y) + w(κ1y + κ2)(κ1 + κ3x
−1)

+ w−1(κ4y
−1 + κ2)[(κ4 + κ3x) + z(κ1x + κ2)] + z−1w(κ4x

−1 + κ2)(κ2 + κ1y)

+ κ2[κ1(x + y) + κ4(x
−1 + y−1) + κ3(yx−1 + xy−1)], (3.6b)

I3 = w−1z−1(κ4x
−1 + κ3)(κ4y

−1 + κ3) + z−1(κ4x
−1 + κ3)(κ2y

−1 + κ1)

+ w−1(κ4y
−1 + κ3)(κ2x

−1 + κ1) + κ3(κ2x
−1y−1 + κ1(x

−1 + y−1)). (3.6c)

Here it is worthwhile to note the mapping (3.5) is invariant under the transformation S
consisting of taking the inverse of w, x, y, z and the interchange of κ1 and κ4, that is,

S(w, x, y, z, κ1, κ2, κ3, κ4) = (w−1, x−1, y−1, z−1, κ4, κ2, κ3, κ1). (3.7)

This means that if I (w, x, y, z, κ1, κ2, κ3, κ4) is an integral, then also

SI (w, x, y, z, κ1, κ2, κ3, κ4) = I (w−1, x−1, y−1, z−1, κ4, κ2, κ3, κ1) (3.8)

is an integral. From equations (3.6a)–(3.6c) we see that I2 is a symmetric integral satisfying
S ◦ I2 = I2 and the asymmetric integrals I1 and I3 transform into each other, that is,

S ◦ I1 = I3, S ◦ I3 = I1.



Super integrable four-dimensional autonomous mappings 5379

Furthermore if F(x, y, z) ◦ F(z, y, x) = 1 the mapping L given by (2.1) has a reversing
symmetry, see [10]

U : w → z, x → y, y → x, z → w

satisfying L◦U ◦L = U . It is easy to see that in (3.5), f1(y) = f5(y), f4(y) = f8(y), f2(y) =
f7(y), f3(y) = f6(y) and therefore (cf equation (2.1)) F(x, y, z) ◦ F(z, y, x) = 1. Hence
the mapping (3.5) has reversing symmetry U and all the integrals I1, I2 and I3 in this case are
invariant under U.

Case 3.2. In this case ν2 = ν5 = ν6 = 0 and equations (3.1) with (2.6) and (2.7) have the
solution

h1(x, y) = h3(x, y) = (h1xy + m1(x + y) + n1)x
−νy−ν

h6(x, y) = h8(x, y) = (h6 + n2(x + y) + n1xy)xνyν

h2(x, y) = h5(x, y) = h7(y, x) = h4(y, x) = (n1x + h2y + m1xy + n2)x
−νyν.

(3.9)

From equation (2.8) we have the solution

f1(y) = f5(y) = κ1y + λ1, f4(y) = f8(y) = λ1y + κ1, (3.10a)

f2(y) = f7(y) = κ1(y + 1), f3(y) = f6(y) = λ1(y + 1). (3.10b)

In order to satisfy the conditions (2.9)–(2.11) we must have ν = 0 and m1 = n1 = n2.

The explicit expressions for the Aij (x, y) in this case are given in equation (A.2) of
appendix A. Then the mapping

w′ = x, x ′ = y, y ′ = z,
(3.11)

z′ = w
(κ1y + λ1)xz + (κ1x + λ1z)(y + 1) + (λ1y + κ1)

(κ1y + λ1)xz + (κ1z + λ1x)(y + 1) + (λ1y + κ1)
.

has three independent integrals corresponding with h1, h2 and h6 in the expression (1.7) for
I (w, x, y, z)

I1 = κ1[wxyz + xy(w + z) + (yz + wx + xy) + w + x + y + z] + λ1[wz(x + y + 1) + xz + wy],

(3.12a)

I2 = κ1[xz + wy + w−1y−1 +x−1z−1 + w−1xz + wyz−1 + w−1y−1z + wx−1z−1 + w−1z + wz−1]

+ λ1[w + x + y + z + w−1 + x−1 + y−1 + z−1 + (x + z)y−1

+ (x−1 + z−1)y + xzw−1y−1 + wyx−1z−1 + wx−1 + xw−1 + xy−1z

+ x−1yz−1 + wx−1y + w−1xy−1], (3.12b)

I3 = κ1[w−1x−1y−1z−1 + x−1y−1(w−1 + z−1) + (y−1z−1 + w−1x−1 + x−1y−1)

+ (w−1 + x−1 + y−1 + z−1)] + λ1[w−1z−1(x−1 + y−1 + 1) + x−1z−1 + w−1y−1].

(3.12c)
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The terms with n1 �= 0 in I (w, x, y, z) of (1.7) give an another dependent integral of the
mapping.

Case 3.3. Here ν5 = 0, ν2 = ν6 = 1. From equations (3.1), (2.6) and (2.7) we obtain the
solution

h1(x, y) = h3(x, y) = (h1 + n1x
−1 + n1y

−1)x1−νy1−ν

h6(x, y) = h8(y, x) = (h6 + n1x + n1y)xν−1yν

h2(x, y) = h4(y, x) = (h2yx−1 + n1)x
1−νyν−1

h5(x, y) = h7(y, x) = (h2yx−1 + n1)x
1−νyν.

(3.13)

Equations (2.8) have the solution

f1(y) = λ1, f2(y) = κ2y, f3(y) = λ5y, f4(y) = λ1y
2,

f5(y) = λ5, f6(y) = λ1y, f7(y) = κ7y, f8(y) = λ5y
2.

(3.14)

In order to satisfy equations (2.9)–(2.11) we must have

λ5 = λ1, κ7 = κ2, ν = 1 (3.15)

and so the explicit forms of Aij (x, y) read as given in equation (A.3) of appendix A. Then the
mapping

w′ = x, x ′ = y, y ′ = z, z′ = w
( z

x

) [λ1(xz + yz + y2) + κ2xy]

[κ2yz + λ1(xy + xz + y2)]
(3.16)

has three independent integrals given by the terms h1, h2 and h6 in expression (1.7) for
I (w, x, y, z) in which we take n1 = 0. The explicit forms of the integrals are

I1 = κ2[w + x + y + z] + λ1[wyx−1 + xzy−1 + wzy−1 + wzx−1], (3.17a)

I2 = κ2[xzw−1y−1 + wyx−1z−1] + λ1[xzy−2 + y2x−1z−1 + wyx−2 + x2w−1y−1

+ zy−1 + yz−1 + wx−1 + xw−1 + yx−1 + xy−1 + x2zw−1y−2 + wy2x−2z−1],

(3.17b)

I3 = κ2[w−1 + x−1 + y−1 + z−1] + λ1[xw−1z−1 + yw−1z−1 + xw−1y−1 + yx−1z−1]. (3.17c)

The terms with n1 �= 0 in I (w, x, y, z) give an another (dependent) integral.

Case 3.4. In this case, ν5 = 0, ν2 = ν6 = −1. From equations (3.1), (2.6) and (2.7) we obtain
the solution

h1(x, y) = h3(x, y) = (h1x
2y2 + n1xy)x−1−νy−1−ν

h6(x, y) = h8(y, x) = (h6y
−1 + L5x)x1+νy1+ν

h2(x, y) = h4(y, x) = (h2xy + n1x
2y + L5x)x−1−νy1+ν

h5(x, y) = h7(y, x) = (h2x + n1x
2 + L5xy−1)x−1−νy1+ν .

(3.18)

Equations (2.8) have the solution

f1(y) = f5(y) = κ1y, f2(y) = f7(y) = κ1,

f3(y) = f6(y) = λ3, f4(y) = f8(y) = κ1y
−1.

(3.19)

In order to satisfy equations (2.9)–(2.11) we must have ν = −1 and L5 = n1 and in
that case the explicit forms of Aij (x, y) are given in equation (A.4) of appendix A. Then the
mapping

w′ = x, x ′ = y, y ′ = z, z′ = w

(
x

z

)
[κ1xy2z + λ3yz + κ1xy + κ1]

[κ1xy2z + κ1yz + λ3xy + κ1]
(3.20)
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has three independent integrals given by

I1 = κ1[xy2z + wx2y2z + yz + wx2y + wx + xy] + λ3wxyz, (3.21a)

I2 = κ1[wxy + xyz + w−1x−1y−1 + x−1y−1z−1 + yzw−1 + wy−1z−1 + zx−1w−1 + xwz−1]

+ λ3[w + x + y + z + w−1 + x−1 + y−1 + z−1], (3.21b)

I3 = κ1[w−1x−1 + x−1y−1 + y−1z−1 + w−1y−1x−2 + x−1y−2z−1 + w−1x−2y−2z−1]

+ λ3w
−1x−1y−1z−1. (3.21c)

Next we consider the case ν5 = −1, ν2 = 0, ν6 = −1. In that case equations (3.1), (2.6)
and (2.7) have the solution

h1(x, y) = h3(x, y) = (h1xy + m1(x + y) + n1)x
−νy−ν

h6(x, y) = h8(y, x) = (h6 + n2(x + y) + n1xy)x1+νyν

h2(x, y) = h4(y, x) = (h2y + m1xy + n1x + n2)x
−νyν

h5(x, y) = h7(y, x) = (n1x + h2y + m1xy + n2)x
1−νyν.

(3.22)

Equations (2.8) have the solution

f1(y) = f4(y) = f5(y) = f8(y) = 0, f2(y) = λ2,

f7(y) = λ7, f3(y) = f6(y) = λ3.
(3.23)

The consistency conditions of equations (2.9)–(2.11) hold for the following two possibilities

λ7 = λ2, m1 = n2 = 0, ν = 0 (3.24)

and

λ7 = λ2, m1 = n1 = n2 = 0, ν = −1 (3.25)

which will be discussed below separately as cases 3.5 and 3.6.

Case 3.5. For equations (3.24) we have the following explicit expressions for Aij (x, y) which
are given by equation (A.5) of appendix A. Then the mapping

w′ = x, x ′ = y, y ′ = z, z′ = w
[λ3z + λ2x]

[λ3x + λ2z]
(3.26)

has the following three integrals

I1 = λ3wz + λ2[yz + wx + xy], (3.27a)

I2 = λ3[wx−1 + xw−1 + xy−1 + yx−1 + yz−1 + zy−1] + λ2[wz−1 + zw−1], (3.27b)

I3 = λ2[w−1x−1 + x−1y−1 + y−1z−1] + λ3w
−1z−1. (3.27c)

Case 3.6. In the case of equation (3.25), the explicit expressions for Aij (x, y) are given in
equation (A.6) of appendix A. Then the mapping

w′ = x, x ′ = y, y ′ = z, z′ = w

(
x

z

)
[λ3z + λ2x]

[λ3x + λ2z]
(3.28)

has three independent integrals given by

I1 = λ3wxyz + λ2[xy2z + wx2y], (3.29a)

I2 = λ2[wxy−1z−1 + yzw−1x−1] + λ3[wy−1 + yw−1 + xz−1 + zx−1], (3.29b)
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I3 = λ2[w−1x−2y−1 + x−1y−2z−1] + λ3w
−1x−1y−1z−1. (3.29c)

Case 3.7. In this case, ν5 = 1, ν2 = −2, ν6 = −1. Then equations (3.1), (2.6) and (2.7) have
a solution with l1(y) = l3(y) = l5(y) = l7(y) = 0 and

h1(x, y) = h3(x, y) = x1−νy1−νh1, h6(x, y) = h8(y, x) = x1+νyνh6

h2(x, y) = h4(y, x) = x−νyν+3h2, h5(x, y) = h7(y, x) = x−1−νy1+νh2.
(3.30)

Equations (2.8) have the solution

f1(y) = f5(y) = κ1y, f3(y) = f6(y) = λ3,

f4(y) = f8(y) = κ1y
−1, f2(y) = f7(y) = 0.

(3.31)

Furthermore the consistency of equations (2.9)–(2.11) requires that ν = −2. As a result
we have the following explicit forms of Aij (x, y) as given by (A.7) of appendix A. Then the
mapping

w′ = x, x ′ = y, y ′ = z, z′ = w

(
x

z

)2 [κ1xy2z + λ3yz + κ1]

[κ1xy2z + λ3xy + κ1]
(3.32)

has three independent integrals

I1 = λ3wx2y2z + κ1xy(yz + wx + wx2y2z), (3.33a)

I2 = κ1[xy2z + wx2y + x−1y−2z−1 + w−1x−2y−1 + wxy−1z−1 + yzw−1x−1]

+ λ3[wx + yz + xy + w−1x−1 + y−1z−1 + x−1y−1], (3.33b)

I3 = κ1[w−1x−3y−3z−1 + x−1y−2z−1 + w−1x−2y−1] + λ3w
−1x−2y−2z−1. (3.33c)

Considering the symmetries of the mappings derived in cases 3.2–3.7 we see that in all
cases the mappings have the form (2.1) with

f1(y) = f5(y), f4(y) = f8(y), f2(y) = f7(y), f3(y) = f6(y), (3.34)

and

f1(y) = f4(y
−1)yλ, f2(y) = f2(y

−1)yλ,

f3(y) = f3(y
−1)yλ, f4(y) = f1(y

−1)yλ.
(3.35)

Equation (3.34) implies that all mappings have reversing symmetry U,

U : w → z, x → y, y → x, z → w

satisfying L ◦ U ◦ L = U , cf [10], and equation (3.35) implies that all mappings are invariant
under taking the inverse I, that is

I (w, x, y, z) = I (w−1, x−1, y−1, z−1)

In all these cases, the integrals I1, I2 and I3 are invariant under the reversing symmetry U,
the integral I2 is symmetric under the inversion I ◦ I2 = I2 and the integrals I1 and I3 are
asymmetric and are transformed into each other, that is

I ◦ I1 = I3, I ◦ I3 = I1.

Finally it is worthwhile to note that in cases 3.3–3.7 the mappings can be reduced to lower
dimensional mappings which will be discussed in section 6.
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4. F-type mappings to have two integrals

In this section, we will restrict ourselves to solutions of equations (2.6), (2.7) and (3.1) with
l1(y) = l3(y) = l5(y) = l7(y) = 0 and

h1(x, y) = h2(x, y) = x1−νy1−νh1, h6(x, y) = h8(y, x) = xν−ν6yνh6

h2(x, y) = h4(y, x) = xνy1+ν−ν2h2, h5(x, y) = h7(y, x) = x−ν−ν5y1+νh2.

Assuming that a linear relation exists among h1, h2 and h6 we can derive F-type of
mappings with two integrals in the following six cases:

Case 4.1. h2 = 0, ν6 = 0, ν = 0.

Case 4.2. h2 = 0, ν6 = −1, ν = −1.

Case 4.3. h2 = 0, ν6 = −1, ν = −2.

Case 4.4. h1 = h6, ν5 = −1, ν2 = 0, ν6 = −1, ν = 1.

Case 4.5. h1 = h6, ν5 = 1, ν2 = 2, ν6 = 3, ν = 2.

Case 4.6. h6 = 0, ν5 = 1, ν2 = −1, ν = −1.

Case 4.1. In this case h2 = 0, ν6 = 0. From equations (2.8) we obtain

f1(y) = f5(y) = κ1y + λ1, f3(y) = f6(y) = λ1y + λ3, f4(y) = f8(y) = λ3y + λ4.

(4.1)

Making use of the above in equations (2.9)–(2.11) with h2 = 0 we find

ν = 0, f2(y) = f7(y) = κ2y + λ2. (4.2)

As a consequence the functions Aij (x, y) take the following forms given by equation (A.8) of
appendix A. Then the mapping becomes

w′ = x, x ′ = y, y ′ = z,

z′ = w
[κ2xy + λ2x + λ3y + λ4] + z[κ1xy + λ1(x + y) + λ3]

[κ2yz + λ3y + λ2z + λ4] + x[κ1yz + λ1(y + z) + λ3]

(4.3)

which admits two independent integrals

I1 = λ4(w + x + y + z) + λ2(wx + xy + yz) + λ3(wy + wz + xz)

+ λ1(wxz + wyz) + κ2(wxy + xyz) + κ1wxyz, (4.4a)

I3 = κ1[w−1 + x−1 + y−1 + z−1] + κ2[w−1x−1 + x−1y−1 + y−1z−1]

+ λ1[w−1y−1 + w−1z−1 + x−1z−1] + λ2[w−1x−1y−1 + x−1y−1z−1]

+ λ3[w−1x−1z−1 + w−1y−1z−1] + λ4w
−1x−1y−1z−1. (4.4b)

Next we consider the case h2 = 0, ν6 = −1. In that case that h2 = 0, equations (2.8) lead to

f1(y) = f5(y) = κ1y, f3(y) = f6(y) = λ3, f4(y) = f8(y) = λ4y
−1. (4.5)

Then equations (2.9)–(2.11) have two distinct solutions. They are

ν = −1, f2(y) = f7(y) = λ2 (case 4.2) (4.6)

and

ν = −2, f2(y) = f7(y) = 0 (case 4.3) (4.7)

which will be discussed below separately as cases 4.2 and 4.3.
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Case 4.2. From equation (4.6), we have the following explicit forms of Aij (x, y) given by
equation (A.9) of appendix A. Then the mapping

w′ = x, x ′ = y, y ′ = z, z′ = wx

z

[κ1xy2z + λ3yz + λ2xy + λ4]

[κ1xy2z + λ3xy + λ2yz + λ4]
(4.8)

admits the following two integrals

I1 = κ1wx2y2z + λ3wxyz + λ2[xy2z + wx2y] + λ4[yz + wx + xy], (4.9a)

I3 = κ1[w−1x−1 + y−1z−1 + x−1y−1] + λ2[x−1y−2z−1 + w−1x−2y−1]

+ λ3w
−1x−1y−1z−1 + λ4w

−1x−2y−2z−1. (4.9b)

Case 4.3. For equation (4.7) the explicit forms for Aij (x, y) are given in equations (A.10) of
appendix A. Then the mapping

w′ = x, x ′ = y, y ′ = z, z′ = w

(
x

z

)2 [κ1xy2z + λ3yz + λ4]

[κ1xy2z + λ3xy + λ4]
(4.10)

possesses two independent integrals

I1 = κ1wx3y3z + λ3wx2y2z + λ4[xy2z + wx2y], (4.11a)

I3 = κ1[w−1x−2y−1 + x−1y−2z−1] + λ3w
−1x−2y−2z−1 + λ4w

−1x−3y−3z−1. (4.11b)

Case 4.4. Here ν5 = −1, ν2 = 0, ν6 = −1, h2 �= 0. In that case equations (2.8) have the
solutions

f1(y) = f4(y) = f5(y) = f8(y) = 0, f3(y) = f6(y) = λ3,

f2(y) = λ2, f7(y) = λ7.
(4.12)

Equations (2.9)–(2.11) have solutions with λ2 = λ7 and general h1, h2, h6 for ν = 0
and ν = −1 which have been considered in case 3.5 and case 3.6, respectively. But there is
another solution with general λ2, λ7 and h1 = h6 for ν = 1 with explicit forms of Aij (x, y)

given by equations (A.11) of appendix A. Then the mapping

w′ = x, x ′ = y, y ′ = z, z′ = w
( z

x

) [λ2x + λ3z]

[λ3x + λ7z]
(4.13)

admits two independent integrals

I1 + I3 = λ3[wzx−1y−1 + xyw−1z−1] + λ7[zx−1 + yw−1] + λ2[wy−1 + xz−1], (4.14a)

I2 = λ3[xzy−2 + y2x−1z−1 + wyx−2 + x2w−1y−1] + λ7xzw−1y−1 + λ2wyx−1z−1. (4.14b)

Case 4.5. Here h1 = h6, ν5 = 1, ν2 = 2, ν6 = 3. In this case equations (2.8) have solutions

f1(y) = f5(y) = κ1y, f2(y) = κ2y
2, f7(y) = κ7y

2,

f4(y) = f8(y) = κ1y
3, f3(y) = f6(y) = 0.

(4.15)

From equations (2.9)–(2.11) we have a solution with general κ2, κ7 and h1 = h6 for ν = 2
and the explicit forms of Aij (x, y) are given in equations (A.12) of appendix A. Then the
mapping

w′ = x, x ′ = y, y ′ = z, z′ = w
( z

x

)2 [κ1xz + κ2xy + κ1y
2]

[κ1xz + κ7yz + κ1y2]
(4.16)
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has two independent integrals

I1 + I3 = κ1[wzx−1y−1 + xyw−1z−1 + xzy−2 + y2x−1z−1 + wyx−2 + x2w−1y−1]

+ κ7[zy−1 + xw−1 + yx−1] + κ2[xy−1 + yz−1 + wx−1], (4.17a)

I2 = κ1[xzy−2 + y2x−1z−1 + wyx−2 + x2w−1y−1 + x3zw−1y−3 + wy3x−3z−1]

+ κ7x
2zw−1y−2 + κ2wy2x−2z−1. (4.17b)

Case 4.6. Here h6 = 0, ν5 = 1, ν2 = −1. In this case equations (2.8) have solutions

f1(y) = f5(y) = κ1y, f4(y) = f8(y) = κ1,

f3(y) = f6(y) = λ3, f2(y) = f7(y) = 0.
(4.18)

Considering the conditions (2.9)–(2.11) we must have ν = −1 and the explicit expressions
for Aij (x, y)’s are given in equations (A.13) of appendix A. Then the mapping

w′ = x, x ′ = y, y ′ = z, z′ = w

(
x

z

)
[κ1xyz + λ3z + κ1]

[κ1xyz + λ3x + κ1]
(4.19)

has two independent integrals of motion

I1 = κ1[wx2y2z + wxy + xyz] + λ3wxyz, (4.20a)

I2 = λ3[w + x + y + z + w−1y−1 + x−1z−1]

+ κ1[wxy + xyz + w−1x−1y−1 + x−1y−1z−1 + zw−1 + wz−1]. (4.20b)

It is appropriate to mention here that the mappings identified in cases 4.4 and 4.5 do
not have the reversing symmetry U, because λ2 �= λ7 and κ2 �= κ7 in contrast to the
mappings in cases 4.1–4.3 and 4.6. Similarly in cases 4.1–4.5 the mapping is invariant under
a transformation consisting of taking the inverse of w, x, y, z combined with the interchange
of two parameters occurring in the mapping, but in case 4.6 this symmetry is not there. Lower
dimensional reductions of the mappings derived in this section will be discussed in section 6.

5. Seven families of dual mappings of type G with two integrals

Starting from the seven families of super integrable F-type of mappings treated in section 3,
satisfying the conditions (1.9) and (1.10) and the factorization property (1.8) we have derived
seven families of dual mappings of type G as given in (1.12). The results will be specified in
cases 5.1–5.7 which are associated with cases 3.1–3.7 of section 3.

Case 5.1. From equations (B.1) of appendix B and equation (1.12), we obtain

w′ = x, x ′ = y, y ′ = z, z′ = 1

w

[xz(y + a5)a2h2 + (y + a6)h6]

[xyz(y + a1)h1 + y(y + a2)h2]
. (5.1)

For general a1, a2, a5 and a6 with a2a5 = a1a6 this mapping has only one integral
I (w, x, y, z). However, for the following two possibilities

h2 = 0, h1 �= 0, h6 �= 0, (case 5.1.1) (5.2)

and

h1 = h6 = 0, h2 �= 0 (case 5.1.2) (5.3)

equation (5.1) reduces into a mapping with two independent integrals.
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Case 5.1.1. Taking h2 = 0 in equation (5.1) we find

w′ = x, x ′ = y, y ′ = z, z′ =
(

h6

h1wxyz

)
[y + a6]

[y + a1]
(5.4)

which is an integrable and symplectic mapping identical to equation (3.23) of [7] obtained
from the z1 = 2, z2 = 3 reduction of the ��mKdV difference equation. The two
independent integrals are given by the terms with κ2 and without κ2 in the expression for
I (w, x, y, z) = I1(w, x, y, z) + I3(w, x, y, z).

Case 5.1.2. Taking h1 = h6 = 0 in equation (5.1) we find

w′ = x, x ′ = y, y ′ = z, z′ =
(

h2xz

h2wy

)
[a2y + a2a5]

[y + a2]
(5.5)

which is also an integrable and symplectic mapping equation (3.26) of [7] obtained from the
z1 = 2, z2 = 3 reduction of the ��s-G difference equation. One integral is given by the
terms with κ3 in I2(w, x, y, z) and the other integral by the terms without κ3.

Case 5.2. From equations (B.2) and (1.12), we obtain

w′ = x, x ′ = y, y ′ = z,

z′ = 1

w

[(h2 − n1)xz + (h6 − n1) + n1(x + 1)(y + 1)(z + 1)]

[(h1 − n1)xyz + (h2 − n1)y + n1(x + 1)(y + 1)(z + 1)]
.

(5.6)

We wish to mention here that for n1 �= 0 the mapping (5.6) has two independent
integrals corresponding to the terms κ1 and the terms with λ1 respectively in the expression
for I (w, x, y, z) including the contribution arising from the terms with n1 in the Aij (x, y).
However, for n1 = 0 the mapping (5.6) reduces to the integrable and symplectic mapping,
equation (3.5) of [7] which is the z1 = 1, z2 = 5 reduction of the ��mKdV difference
equation.

Case 5.3. From equations (B.3) and (1.12) we obtain

w′ = x, x ′ = y, y ′ = z,

z′ = xz

wy

[(h2 − n1)xz + h6y + n1(xz + yz + xy + y2]

[h1xz + (h2 − n1)y + y−1n1(xz + yz + xy + y2)]
.

(5.7)

Here also for n1 �= 0 the mapping has two independent integrals corresponding to the
terms κ2 and λ1 respectively in the expression I (w, x, y, z) including the contribution from
the terms with n1 in the Aij (x, y). For n1 = 0 the mapping (5.7) reduces to the symplectic
and integrable mapping equation (3.19) of [7] which is the z1 = 1, z2 = 4 reduction of the
��s-G difference equation.

Case 5.4. From equations (B.4) and (1.12), we obtain

w′ = x, x ′ = y, y ′ = z,

z′ = 1

wxyz

[h2xyz + (h6 − n1) + n1(xy + 1)(yz + 1)]

[(h1 − n1)xyz + h2 + n1y−1(xy + 1)(yz + 1)]
.

(5.8)

We wish to mention here that for n1 �= 0, the above mapping has two independent integrals
of motion which can be obtained as the terms corresponding to κ1 and λ3 in I (w, x, y, z)

including the contributions of the terms with n1 in Aij (x, y). However, for n1 = 0 the
mapping (5.8) reduces to the integrable and symplectic mapping (3.18) of [7] which is the
z1 = 1, z2 = 4 reduction of the ��mKdV difference equation.

Case 5.5. From equations (B.5) and (1.12) we obtain

w′ = x, x ′ = y, y ′ = z, z′ = [h2xyz + n1y
2(x + z) + h6y]

w[h1xyz + n1(x + z) + h2y]
. (5.9)
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For n1 �= 0 this mapping, which has also been treated in some detail as motivating
example in equation (32) of [9], has two independent integrals obtained by taking the terms
corresponding to λ2 and λ3 in I (w, x, y, z) including the contributions arising from the terms
with n1 in the Aij (x, y). However, for n1 = 0 the mapping (5.9) reduces to an integrable
and symplectic mapping equation (3.7) of [7] which is the z1 = 1, z2 = 3 reduction of the
��s-G difference equation.

Case 5.6. From equations (B.6) and (1.12) we obtain

w′ = x, x ′ = y, y ′ = z, z′ = [h2xy2z + h6]

wxz[h1xy2z + h2]
, (5.10)

which is equation (3.12) of [7].

Case 5.7. From equations (B.7) and (1.12), we obtain

w′ = x, x ′ = y, y ′ = z, z′ = [h2xy2z + h6]

wx2y2z2[h1xy2z + h2]
. (5.11)

The above four-dimensional mapping has a symplectic structure characterized by the
values p = 2, α = 2 in expressions (2.19) and (2.20) of [7] for the symplectic matrix �. It
also has two independent integrals characterized by the terms with κ1 and λ3 in the expressions
for I (w, x, y, z) given by equation (1.7).

6. Summary of results and concluding remarks

6.1. Summary of results

In section 3, we have specified seven families of super integrable mapping of type F as
given by (1.5) and (1.11) which are measure preserving [10] with density 1

wxyz
and in which

Aij (x, y) are linear combinations of terms involving (independent) parameters h1, h2 and h6

not occurring in the mapping. The three integrals I1, I2 and I3 are obtained as the coefficients
of the terms with h1, h2 and h6 in the expression for I (w, x, y, z). The treatment is based
on a factorization property equation (1.8) in differencing the integral I (w, x, y, z) which
is valid under the conditions (1.9) and (1.10). (For other treatments emphasizing the role of
factorization in studying integrability, see [11, 12].) In section 4, we have specified six families
in cases 4.1–4.6 in which a linear relation exists between the parameters h1, h2 and h6 leading
to mappings of type (1.11) with two integrals. Finally in section 5, we have specified seven
families of G-type of mappings as in (1.12) in cases 5.1–5.7 which are the dual mappings of
the F -type of mapping in cases 3.1–3.7.

6.2. Reductions to lower dimensional mappings

From the mappings derived in sections 3 and 4, cases 3.3, 3.4 and 3.7 as well as 4.2, 4.3 and
4.5 can be reduced to three-dimensional mappings. In cases 3.5, 3.6 and 4.4, the mapping
can be reduced to a two-dimensional mapping of the QRT-family. In fact, the mapping given
in (case 3.3) equation (3.16) can be reduced to three-dimensional mapping in terms of the
variables W = x

w
,X = y

x
, Y = z

y
. The three-dimensional mapping has two independent

integrals namely I2 and I1I3 obtained from equations (3.17b) and (3.17a), (3.17c)) in terms of
(W,X, Y ). It is appropriate to mention here that this three-dimensional mapping is a special
case a3 = a1 = b1 = λ1, b3 = a0 = κ2 of the (integrable) Hirota Y1 equation [13] which has
been expressed as a pair of QRT mappings [2] in [14].
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Similarly the four-dimensional mapping given in (case 3.4) equation (3.20) can be reduced
into a three-dimensional mapping in terms of the variables W = wx,X = xy, Y = yz which
is also a measure preserving one and admits two independent integrals I1 and I3 obtained
from equations (3.21a) and (3.21c) in terms of (W,X, Y ). This mapping has also been given
in equations (59)–(61) of [9] with z = 4 which is the dual of the z1 = 1, z2 = 4 reduction
of the ��mKdV equation as given in equation (3.18) of [7]. It is also the special case
with λ2 = λ4 = κ1 of the three-dimensional reduction with W = wx,X = xy, Y = yz of
equation (4.8) in case 4.2. This more general three-dimensional mapping has also been treated
in [15], cf also equation (20) of [16] with p4 = κ3, p3 = λ2, α(n) = λ3, ρ(n) = λ4. The
three-dimensional reduction of equation (4.8) is measure preserving and has two integrals
given by the expressions for I1 and I3 in equations (4.9a) and (4.9b) expressed in terms of
(W,X, Y ).

Next, the four-dimensional mapping given in (case 3.7) can be reduced to a three-
dimensional mapping in terms of the variables W = wx,X = xy, Y = yz. This three-
dimensional reduction has also been given in equation (37) of [9] with α = λ3, β = κ1.

Moreover this three-dimensional reduction is a special case of λ4 = κ1 of the three-dimensional
mapping of equation (4.10). The more general three-dimensional mapping with λ4 �= κ1 is
measure preserving and has two integrals given by the integrals I1 and I3 in equation (4.11a)
and (4.11b) in terms of (W,X, Y ).

Finally, the four-dimensional mapping given in (case 4.5) equation (4.16) can be reduced
to a three-dimensional mapping in terms of the variables W = wx,X = xy, Y = yz. This
three dimensional reduction has also been given in equation (38) of [9] with α = 0, β =
k1, γ = κ7, δ = κ2. Furthermore this mapping is measure preserving and has two integrals
which are given by the expressions for I1 + I3 and I2 in equations (4.17a) and (4.17b) in terms
of the variables (W,X, Y ).

6.3. Super integrable and dual systems

From the results of section 5, it can be inferred that all seven families of super integrable
mappings of F-type derived in section 3 can be identified as the dual mappings of known
integrable systems. In fact the mapping given in equation (3.11) in case 3.1 is the dual
mapping of the z1 = 2, z2 = 3 reduction of the ��mKdV difference equation and also the
dual mapping of the z1 = 2, z2 = 3 reduction of the ��s-G equation. On the other hand,
both reductions of the ��mKdV and ��s-G equations given in equations (3.23) and (3.26)
of [7] are dual mappings of (3.11) that can be obtained by taking into account only the terms
with h1 and h6 or only the terms with h2 in the expression for I (w, x, y, z).

The super integrable mappings derived in cases 3.2, 3.3, 3.4 and 3.5 are the dual mappings
of the special cases with n1 = 0 in equations (5.6), (5.7), (5.8) and (5.9). In fact from these
four cases we respectively obtain

(i) the integrable and symplectic mapping (3.5) of [7] which is the z1 = 1, z2 = 5 reduction
of the ��mKdV difference equation,

(ii) the integrable and symplectic mapping (3.19) of [7] which is the z1 = 1, z2 = 4 reduction
of the ��s-G difference equation,

(iii) the integrable and symplectic mapping (3.18) of [7] which is the z1 = 1, z2 = 4 reduction
of the ��mKdV difference equation,

(iv) the integrable and symplectic mapping (3.7) of [7] which is the z1 = 1, z2 = 3 reduction
of the ��s-G difference equation.

Hence, we conclude that the super integrable mappings given in cases 3.1–3.5 can be
identified as being the dual mappings of all six symplectic and integrable four-dimensional
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mappings that are obtained in [7] as periodic reduction of difference equations on the two-
dimensional lattice as treated in [4].

On the other hand, the symplectic and integrable mappings of [7] are obtained as the
duals of the super integrable mappings in cases 3.1–3.5 if we only take into account of the
terms with h1, h2 and h6 in the definition of I (w, x, y, z). However in cases 3.2–3.5, we may
also take into account another (dependent) integral characterized by the terms with n1 in the
expression for I (w, x, y, z). In this way we obtain four four-dimensional mappings of type
G with four parameters given in equations (5.6), (5.7), (5.8) and (5.9). Among the mappings
equation (5.14) has been given before as motivating example, cf equation (32) of [9], the
other mappings have been obtained by using similar constructions of dual mappings. The
reported 4-parameter mappings of type G have two independent integrals given by the terms
with κ1 and λ1 in the case of equation (5.6), κ2 and λ1 in the case of equation (5.7), κ1 and
λ3 in the case of equation (5.8) and λ2 and λ3 in the case of equation (5.9) respectively in the
expressions for I (w, x, y, z) in which the extra terms due to n1 are included. Furthermore,
the mappings in cases 4.1 and 4.6, cf equations (4.3) and (4.19) provide few more examples
of four-dimensional mappings (now of type F) having two integrals. Since no symplectic
structure has been found for the above-mentioned six mappings, the question concerning their
integrability nature remains open. One possible approach to this problem could be based on
possible extensions of the investigations of [17] concerning the relation between integrability
and singularity confinement criteria. However a more direct test for integrability might
be developed by considering a possible four-dimensional generalization of the arithmetical
approach to integrability by Roberts et al [18, 19].

The four-dimensional mappings given in equations (5.10) and (5.11) can be reduced to
two-dimensional mappings of the QRT family [2] in terms of the variables W = wx2y and
X = xy2z. The two-dimensional reduction of (5.10) is the same as the two-dimensional
reduction of equation (4.13) of case (4.4) in terms of the variables W = y

w
,X = z

x
. Also the

two-dimensional reduction of equation (5.11) is the same as the two-dimensional reduction of
equation (3.26) in case 3.5 in terms of the variables W = y

w
,X = z

x
.

6.4. LSD-type of mappings

It is interesting to note that all the mappings given in cases 3.1–3.7 contain an integral
I1(w, x, y, z) which is a linear expression in terms of the variable z. From this we can
apply a method of interchanging integrals and variables [20] and solve for z as a function
of the value of the integral I1 and the fields (w, x, y) and the parameters occurring in the
mapping. Inserting this solution into w′ = x, x ′ = y, y ′ = z we obtain a three-dimensional
level-set dependent (LSD) mapping that in the original four-dimensional mapping acts on
the level sets of its integral I1 as the three dimensional LSD mapping, for background, see
also [21, 22] in which it was shown that each QRT map acts as a generalised McMillan
mapping on the level sets of the QRT mapping, see also [9] in which a class of higher
dimensional dual mKdV mappings was expressed in terms of LSD mKdV difference
equations. Furthermore the three-dimensional reductions of equation (4.8) in case 4.2
and equation (4.10) in case 4.3 with W = wx,X = xy, Y = yz contain an integral I1

which is linear in y and can be reduced to two-dimensional level-set dependent mappings
of the QRT family. Furthermore in cases 3.1–3.5 as well as in cases 4.4–4.6 the integral
I2(w, x, y, z) can be expressed as sum of two integrals J1(w, x, y, z), J2(w, x, y, z) satisfying
J1(x, y, z, z′) = J2(w, x, y, z), J2(x, y, z, z′) = J1(w, x, y, z) and containing the terms with
zw−1, z, w−1 and with wz−1, z−1, w respectively [23]. It would be worthwhile to investigate
the problem of level-set dependent reductions of mappings containing an integral linear in one
of the coordinates from a general point of view.
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Using the ideas of interchanging parameters and integrals in discrete dynamical systems
developed in [24] and taking the Hirota Y1 equation [13] as a starting point, Roberts and Quispel
constructed a very general 21-parameter family of integrable three-dimensional mappings [16].
It would be of interest to identify the reductions to three-dimensional mappings discussed in
the present paper as special cases of this very general family.

To conclude this paper, it is worthwhile to point out that the methods developed
in this paper can be extended to more general N-dimensional mappings of the type
wn+N = wnF(wn,wn+1, . . . , wn+N−1) and wn+N = 1

wn
G(wn,wn+1, . . . , wn+N−1) in which

the right-hand side is a rational function with numerator and denominator as in equation (2.1)
being bilinear in wn+1 and wn+N−1 with coefficients depending on (wn+2, wn+3, . . . , wn+N−2).
These mappings can be derived from a general integral I (wn,wn+1, . . . , wn+N−1) as in
equation (1.7) being bilinear in

(
wn,wn+N−1, w

−1
n , w−1

n+N−1

)
and satisfying factorization

properties as in equation (1.8). On the basis of the factorization property, these mapping
have two or more integrals which can be evaluated explicitly (and possibly in special cases
(N − 1) integrals to find new super integrable cases). The results of the above will be reported
elsewhere [25]. On the other hand the factorization property is a natural expression of duality
[9] leading to integrable mappings of type G, cf equation (1.3) which for even N include all
periodic reductions of the integrable sine-Gordon and modified Korteweg–de Vries equations
on the two-dimensional lattice [4]. Therefore it may be concluded that the methods in the
present paper are independent of the dimension of the mapping and be applied quite generally
to gain systematic insight in the integrability properties of higher dimensional mappings as
well as interesting new cases. The higher dimensional mappings can be applied to all kinds
of physical applications involving stationary, periodic and similarity solutions of evolution
equations or the two-dimensional lattice (or in a good approximation more dimensional
ones with interactions being predominant in one direction, see e.g. several interesting papers
in [26], or difference equations occurring in exactly solvable models on two-dimensional
lattice [27] ).
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Appendix A.

In this appendix, we present the explicit forms for the Aij (x, y) in cases 3.1–3.7 and 4.1–4.6

Case 3.1. In case 3.1 with ν = 0, we have

A11(x, y) = xy(κ1x + κ3)(y + a1)h1, A13(x, y) = a2x(κ1x + κ2)(y + a5)h2,

A12(x, y) = x[(κ1y + κ3)(x + a2)h2 + y(x + a1)(κ2y + κ4)h1],

A33(x, y) = (κ3x + κ4)(y + a6)h6,

A32(x, y) = [(x + a6)(κ1y + κ2)h6 + a2y(x + a5)(κ3y + κ4)h2],
A22(x, y) = κ2a1h1x

2y2 + [(κ4a1h1 + κ1a2h2)xy(x + y)]
+ κ3a2h2(x

2 + y2) + [(κ4a2h2 + κ1h6)(x + y)] + κ2h6,

A31(x, y) = A13(y, x), A21(x, y) = A12(y, x), A23(x, y) = A32(y, x).

(A.1)
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Case 3.2. In case 3.2 with ν = 0,m = n1 = n2,

A11(x, y) = [κ1xy + λ1(x + y + 1)][(h1 − n1)xy + n1(x + 1)(y + 1)],

A33(x, y) = [λ1(xy + x + y) + κ1][(h6 − n1) + n1(x + 1)(y + 1)],

A13(x, y) = A31(y, x) = [κ1(xy + y + 1) + λ1x][(h2 − n1)x + n1(x + 1)(y + 1)],

A12(x, y) = A21(y, x) = [κ1(xy + y + 1) + λ1x][(h1 − n1)xy + n1(x + 1)(y + 1)]

+ [κ1xy + λ1(x + y + 1)][(h2 − n1)x + n1(x + 1)(y + 1)],

A32(x, y) = A23(y, x) = [κ1 + λ1(xy + y + x)][(h2 − n1)y + n1(x + 1)(y + 1)]

+ [κ1(xy + y + 1) + λ1y][(h6 − n1) + n1(x + 1)(y + 1)],

A22(x, y) = [κ1h1 + 2κ1n1 + λ1n1]x2y2 + [λ1h2 + 2λ1n1 + κ1n1](x2 + y2)

+ [κ1h1 + λ1h2 + 3κ1n1 + 3λ1n1]xy(x + y)

+ [κ1h6 + λ1h2 + 3κ1n1 + 3λ1n1](x + y) + [κ1h6 + 2κ1n1 + λ1n1]. (A.2)

Case 3.3. In case 3.3 with λ5 = λ1, κ7 = κ2, ν = 1,

A11(x, y) = λ1x
−1y−1(x + y)[h1xy + n1(x + y)],

A33(x, y) = λ1xy(x + y)[h6 + n1x + n1y],

A13(x, y) = A31(y, x) = (λ1x + κ2y)[h2x + n1y]xy−1,

A32(x, y) = A23(y, x) = λ1y(x + y)(h2y + n1x) + (λ1y + κ2x)y(h6 + n1x + n1y),

A12(x, y) = A21(y, x) = (λ1x + κ2y)[h1xy + n1(x + y)]y−1 + λ1(x + y)[h2x + n1y]y−1,

A22(x, y) = κ2h1xy(x + y) + [λ1h2 + 2λ1n1 + κ1n1](x2 + y2) + κ2h6(x + y).

(A.3)

Case 3.4. In case 3.4 with L5 = n1 and ν = −1, we have

A11(x, y) = xy(κ1xy + λ3)(h1xy + n1),

A13(x, y) = A31(y, x) = κ1(xy + 1)y(h2x + n1 + n1xy)

x
,

A33(x, y) = (λ3xy + κ1)(h6 + n1xy)

xy
,

A12(x, y) = A21(y, x) = κ1(xy + 1)y(h1xy + n1) + xy(κ1xy + λ3)(h2 + n1y + n1x
−1),

A32(x, y) = A23(y, x) = (λ3xy + κ1)(h2 + n1y
−1 + n1x) + κ1(xy + 1)(n1x + h6y

−1),

A22(x, y) = [κ1(2n1 + h1) + λ3n1]x2y2 + λ3h2(x + y)(xy + 1) + [κ1(2n1 + h6) + λ3n1].

(A.4)

Case 3.5. In case 3.5 with λ7 = λ2,m1 = n2 = 0, ν = 0, we have

A11(x, y) = λ3(h1xy + n1), A13(x, y) = A31(y, x) = λ2y(n1y + h2x),

A22(x, y) = λ2h1x
2y2 + λ3h2(x

2 + y2) + λ2h6, A33(x, y) = λ3xy(n1xy + h6),

A12(x, y) = A21(y, x) = λ2y(h1xy + n1) + λ3(h2x + n1y),

A32(x, y) = A23(y, x) = λ3y(h2xy + n1x
2) + λ2(h6x + n1x

2y).

(A.5)

Case 3.6. In case 3.6 with λ7 = λ2,m1 = n1 = n2 = 0, ν = −1, we have

A11(x, y) = λ3h1x
2y2, A33(x, y) = λ3h6, A12(x, y) = y(λ2h1x

2y2 + λ3h2),

A13(x, y) = λ2y
2h2, A32(x, y) = λ3x

2yh2 + λ2y
−1h6, A22(x, y) = 0,

A21(x, y) = A12(y, x), A23(x, y) = A32(y, x), A31(x, y) = A13(y, x).

(A.6)
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Case 3.7. In case 3.7 with ν = −2, we have
A11(x, y) = x3y3[κ1xy + λ3]h1, A12(x, y) = xy2[κ1h1xy + κ1h2xy + λ3h2],

A22(x, y) = λ3[x2y2 + 1]h2, A13(x, y) = κ1h2y
2,

A32(x, y) = λ3h2x + κ1y
−1(h2 + h6), A33(x, y) = (κ1x

−2y−2 + λ3x
−1y−1)h6,

A21(x, y) = A12(y, x), A31(x, y) = A13(y, x), A23(x, y) = A32(y, x).

(A.7)

Case 4.1. In case 4.1 with ν = 0, f2(y) = f7(y) = κ2y + λ2, we have
A11(x, y) = xy[κ1xy + λ1(x + y) + λ3]h1, A12(x, y) = xy[κ2xy + λ2y + λ3x + λ4]h1,

A22(x, y) = xy[λ2xy + λ4x + λ4y]h1 + [κ1x + κ1y + κ2]h6,

A32(x, y) = [k1xy + λ1y + k2x + λ2]h6, A33(x, y) = [λ1xy + λ3x + λ3y + λ4]h6,

A21(x, y) = A12(y, x), A23(x, y) = A32(y, x), A13(x, y) = A31(x, y) = 0.

(A.8)

Case 4.2. In case 4.2 with ν = −1, f2(y) = f7(y) = λ2, we have

A11(x, y) = x2y2(κ1xy + λ3)h1, A12(x, y) = xy2(λ2xy + λ4)h1,

A22(x, y) = λ4h1x
2y2 + κ1h6, A32(x, y) = (κ1x + λ2y

−1)h6,

A33(x, y) = (λ3 + λ4x
−1y−1)h6,

A13(x, y) = A31(x, y) = 0, A21(x, y) = A12(y, x), A23(x, y) = A32(y, x).

(A.9)

Case 4.3. In case 4.3 with ν = −2, f2(y) = f1(y) = 0, we have

A11(x, y) = x3y3(κ1xy + λ3)h1, A12(x, y) = λ4x
2y3h1,

A32(x, y) = κ1y
−1h6, A33(x, y) = (λ3 + λ4x

−1y−1)x−1y−1h6,

A21(x, y) = A12(y, x), A23(x, y) = A32(y, x),

A22(x, y) = A13(x, y) = A31(x, y) = 0.

(A.10)

Case 4.4. In case 4.4 with h1 = h6, ν = 1, we have
A11(x, y) = λ3h1, A33(x, y) = λ3h6x

2y2, A13(x, y) = λ7h2x
2, A31(x, y) = λ2h2y

2,

A12(x, y) = λ7h1y + λ3h2x
2y−1, A21(x, y) = λ2h1x + λ3h2y

2x−1,

A32(x, y) = λ3h2y
3 + λ2h6x

2y, A23(x, y) = λ3h2x
3 + λ7h6xy2, A22(x, y) = 0.

(A.11)

Case 4.5. In case 4.5 with h1 = h6, ν = 2, we have
A11(x, y) = κ1h1, A33(x, y) = κ1h6x

2y2, A13(x, y) = (κ7x
3y−1 + κ1x

4y−2)h2,

A31(x, y) = (κ2y
3x−1 + κ1y

4x−2)h2, A22(x, y) = κ7y
2h1 + κ2x

2h6,

A12(x, y) = κ7xh1 + κ1x
2y−1(h1 + h2), A21(x, y) = κ2yh1 + κ1y

2x−1(h1 + h2),

A32(x, y) = κ2xy2h6 + κ1y
3(h2 + h6), A23(x, y) = κ7x

2yh6 + κ1x
3(h2 + h6),

(A.12)

Case 4.6. In case 4.6 with ν = −1, we have
A11(x, y) = x2y2(κ1xy + λ3)h1, A12(x, y) = A21(y, x) = κ1x

2y2(h1 + h2) + λ3xyh2,

A22(x, y) = λ3xy(x + y)h2, A13(x, y) = A31(y, x) = k1xyh2,

A32(x, y) = A23(y, x) = (λ3y + κ1)h2, A33(x, y) = 0.

(A.13)
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Appendix B.

In this appendix, we present the expressions for A13(x, y)z2 + A23(x, y)z + A33(x, y) and
A11(y, z)x2 +A12(y, z)x +A13(y, z) in cases 3.1–3.7 which are used to obtain the dual G-type
of mappings in cases 5.1–5.7 with the use of (1.12).

Case 3.1.

A13(x, y)z2 + A23(x, y)z + A33(x, y) = [κ1xz + κ2z + κ3x + κ4][a2xz(y + a5)h2 + (y + a6)h6],

A11(y, z)x2 + A12(y, z)x + A13(y, z) = [κ1xz + κ2z + κ3x + κ4][xyz(y + a1)h1 + y(y + a2)h2].

(B.1)

Case 3.2.

A13(x, y)z2 + A23(x, y)z + A33(x, y) = α(x, y, z)[(h2 − n1)xz + (h6 − n1)

+ n1(x + 1)(y + 1)(z + 1)],
A11(y, z)x2 + A12(y, z)x + A13(y, z) = α(x, y, z)[(h1 − n1)xyz + (h2 − n1)y

+ n1(x + 1)(y + 1)(z + 1)],

α(x, y, z) = [κ1(xyz + yz + z + 1) + λ1(x + y + xy + xz)].

(B.2)

Case 3.3.

A13(x, y)z2 + A23(x, y)z + A33(x, y) = β(x, y, z)[n1xz + h2x
2zy−1 + h6x + n1x

2 + n1xy],

A11(y, z)x2 + A12(y, z)x + A13(y, z) = β(x, y, z)[h1x + n1xz−1 + n1xy−1 + n1 + h2yz−1],

β(x, y, z) = [λ1xz + κ2yz + λ1y
2 + λ1xy].

(B.3)

Case 3.4.

A13(x, y)z2 + A23(x, y)z + A33(x, y) = δ(x, y, z)[h2yz + n1y
2z + n1x

−1yz

+ n1y + h6x
−1]x−1y−1z−1,

A11(y, z)x2 + A12(y, z)x + A13(y, z) = δ(x, y, z)[h1yz + n1x
−1z + h2x

−1 + n1x
−1y−1 + n1],

δ(x, y, z) = [κ1xyz + κ1z + λ3x + κ1y
−1].

(B.4)

Case 3.5.

A13(x, y)z2 + A23(x, y)z + A33(x, y) = [λ3x + λ2z][h2xyz + n1y
2(x + z) + h6y],

A11(y, z)x2 + A12(y, z)x + A13(y, z) = [λ3x + λ2z][h1yxz + n1(x + z) + h2y].
(B.5)

Case 3.6.

A13(x, y)z2 + A23(x, y)z + A33(x, y) = [λ3xy + λ2yz][h2yz + h6x
−1y−1],

A11(y, z)x2 + A12(y, z)x + A13(y, z) = [λ3xy + λ2yz][h1xyz2 + h2y
−1z].

(B.6)

Case 3.7.

A13(x, y)z2 + A23(x, y)z + A33(x, y) = [κ1xyz + λ3x + κ1y
−1][h2x

−1yz + h6x
−2y−1],

A11(y, z)x2 + A12(y, z)x + A13(y, z) = [κ1xyz + λ3x + κ1y
−1][h1xy3z3 + h2yz2].

(B.7)
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